Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling.

نویسندگان

  • Masanori Hayashi
  • Keisuke Nimura
  • Katsunobu Kashiwagi
  • Taku Harada
  • Kunio Takaoka
  • Hiroyuki Kato
  • Katsuto Tamai
  • Yasufumi Kaneda
چکیده

Basic helix-loop-helix (bHLH) transcription factors are known as key regulators for mesenchymal differentiation. The present study showed that overexpression of Twist-1, a bHLH transcription factor, suppresses bone morphogenetic protein (BMP)-induced osteoblast differentiation, and downregulation of endogenous Twist-1 enhances BMP signaling. Maximal inhibition of BMP signaling was observed when Twist-1 was bound to E47, which markedly enhanced the stability of Twist-1. Co-immunoprecipitation assays revealed that Twist-1 formed a complex with Smad4 and histone deacetylase (HDAC) 1 in MC3T3-E1 cells stably expressing Twist-1. With trichostatin, an HDAC inhibitor, osteogenic factors such as alkaline phosphatase, Runx2 and osteopontin increased. Those results suggested that Twist-1 inhibited BMP signaling by recruiting HDAC1 to Smad4. Furthermore, the inhibitory effects of Twist-1 on BMP signaling were overcome by Id1 through induction of Twist-1 degradation. These findings suggest that Twist-1 can act as an inhibitor of BMP signaling, and Id1 can regulate BMP signaling through a positive feedback loop repressing Twist-1 function. These two molecules may therefore regulate differentiation of mesenchymal cells into progeny such as osteoblasts by controlling BMP signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia regulates bone morphogenetic protein signaling through C-terminal-binding protein 1.

Bone morphogenetic protein receptor 2 (BMPR2) mutations have been linked to familial pulmonary arterial hypertension (PAH), but the molecular pathways leading to this severe pathology remain poorly characterized. We report that hypoxia, a paramount stimulus for the development of pulmonary hypertension, suppresses the expression of inhibitor of differentiation 1 (Id1), a downstream target of th...

متن کامل

ID family protein expression and regulation in hypoxic pulmonary hypertension.

Bone morphogenetic protein (BMP) signaling has been linked to the development of pulmonary hypertension (PH). Inhibitors of differentiation (ID) proteins (ID1-4) are a family of basic helix-loop-helix transcription factors that are downstream targets of the BMP signaling pathway, but the role that ID proteins play in the development of PH is unknown. To address this, we evaluated pulmonary expr...

متن کامل

Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells.

Bone morphogenetic protein type II receptor (BMPR-II) mutations are responsible for over 70% of cases of heritable pulmonary arterial hypertension (PAH). Loss of BMP signaling promotes pulmonary vascular remodeling via modulation of pulmonary artery smooth muscle cell (PASMC) proliferation. Id proteins (Id1-4) are major downstream transcriptional targets of BMP signaling. However, the impact of...

متن کامل

Expression and localization of inhibitor of differentiation (ID) proteins during tissue and vascular remodelling in the human corpus luteum.

Members of the transforming growth factor-β (TGF-β) superfamily are likely to have major roles in the regulation of tissue and vascular remodelling in the corpus luteum (CL). There are four inhibitor-of-differentiation (ID1-4) genes that are regulated by members of the TGF-β superfamily and are involved in the transcriptional regulation of cell growth and differentiation. We studied their expre...

متن کامل

Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts.

Loss of function of the Wnt co-receptor, lipoprotein receptor-related protein 5, decreases bone formation, and a point mutation in this gene results in high bone mass, indicating the importance of this signaling pathway in bone formation. However, the exact mechanism is currently unknown. We examined a potential role for Wnt signaling and functional cross-talk of bone morphogenetic protein 2 (B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2007